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Abstract

To-date, brain decoding literature has focused on single-
subject studies, i.e. reconstructing stimuli presented to a sub-
ject under fMRI acquisition from the fMRI activity of the
same subject. The objective of this study is to introduce a gen-
eralization technique that enables the decoding of a subject’s
brain based on fMRI activity of another subject, i.e. cross-
subject brain decoding. To this end, we also explore cross-
subject data alignment techniques. Data alignment is the at-
tempt to register different subjects in a common anatomical
or functional space for further and more general analysis.

We worked with the Natural Scenes Dataset, a comprehensive
7T tMRI experiment focused on vision of natural images. The
dataset contains fMRI data from multiple subjects exposed to
9841 images, where 982 images have been viewed by all sub-
jects. Our method involved training a decoding model on one
subject’s data, aligning new data from other subjects to this
space, and testing the decoding on the second subject based
on information aligned to first subject. We found that cross-
subject brain decoding is possible, even with a small subset
of the dataset, specifically, using the common data, which
are around 10% of the total data, namely 982 images, with
performances in decoding compararble to the ones achieved
by single subject decoding. Ridge regression emerged as the
best method for functional alignment in fine-grained informa-
tion decoding, outperforming all other techniques. By align-
ing multiple subjects, we achieved high-quality brain decod-
ing and a potential reduction in scan time by 90%. This sub-
stantial decrease in scan time could open up unprecedented
opportunities for more efficient experiment execution and fur-
ther advancements in the field, which commonly requires pro-
hibitive (20 hours) scan time per subject.

Introduction

Brain decoding involves reconstructing the original stimuli
from neural data, such as recreating images that triggered
specific brain activity, using measurements obtained from
functional Magnetic Resonance Imaging (fMRI). Brain de-
coding faces the challenge of individual variability in brain
anatomy and function. To overcome the need for exten-
sive data collection from each subject, we propose a func-
tional alignment of brain representation using ridge regres-
sion, aligning brain activity patterns across subjects. This
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Figure 1: This scheme outlines our cross-subject decod-
ing method using two subjects. First, a decoding model
is trained with one subject’s (Subj01) brain activity corre-
sponding to 8859 unique images. Next, the model aligns and
decodes images from a second subject (SubjO2) based on
their shared stimuli exposure (982 images), enabling image
reconstruction from Subj02’s brain activity without a sepa-
rate model..

enables the application of a fine-grained decoder trained on
one subject to others, reducing the need for comprehensive
data collection per individual (Du et al. 2022a; Zafar et al.
2015; Awangga, Mengko, and Utama 2020). The goal of this
work is to decode the visual representation from brain activ-
ity measured through functional MRI across different sub-
jects. Our approach demonstrates successful cross-subject
decoding and visual stimulus reconstruction, transforming
varied brain representations into a common aligned space.
Unlike transfer learning, which requires re-training models
with each new subject’s data, our method aligns brain activ-
ity patterns without re-training the decoder, making it more
efficient and scalable for cross-subject brain decoding. This
facilitates applications with minimal data requirements and
accommodates decoding under diverse conditions.

Related Work

In the rapidly advancing field of deep learning-based brain
decoding, a variety of models have been employed to an-
alyze preprocessed fMRI time series for decoding visual
stimuli, focusing on reconstructing images from specific
fMRI patterns. These include methods using variational au-
toencoders with generative adversarial components, sparse



Figure 2: The ”Stimulus” column shows images from an
fMRI experiment. The ”Subj01” column illustrates decoded
results using a subject-specific model, serving as a perfor-
mance baseline. Other columns demonstrate results from
functional alignment using Ridge Regression with common
data (952 images). Here, subjects are aligned to Subj01 and
decoded with SubjOl’s trained decoder. The images dis-
played were not used in the alignment process, highlighting
the effectiveness of functional alignment on unseen data..

linear regression, unsupervised and adversarial strategies,
as well as the application of pretrained architectures and
diffusion models for enhanced image reconstruction (Van-
Rullen and Reddy 2019; Horikawa and Kamitani 2017; Shen
et al. 2019; Ren et al. 2019; Gaziv et al. 2022; Donahue and
Simonyan 2019; Casanova et al. 2021; Takagi and Nishi-
moto 2023; Chen et al. 2022; Ferrante, Boccato, and Toschi
2023; Ozcelik and VanRullen 2023; Ferrante et al. 2023).
For a detailed review of these methods, we remand to a re-
cent literature review (Du et al. 2022b). Functional align-
ment techniques, including Hyperalignment, the Shared Re-
sponse Model (SRM), and Independent Component Anal-
ysis (ICA), have been explored for aligning brain activity
across individuals, each with its unique advantages and lim-
itations (Haxby et al. 2011, 2020; Chen et al. 2015; Calhoun,
Liu, and Adal1 2009; Bazeille et al. 2021). This paper intro-
duces a simplified approach to align neural data across sub-
jects for effective brain decoding of fMRI data, leveraging
unified brain representations. This method contrasts tradi-
tional transfer learning by maintaining a constant model and
aligning neural data, suitable for limited data and diverse ex-
perimental conditions.

Material and Methods

In this section, we describe the proposed method and the
data we used. The data are publicly available and can be
requested at https://naturalscenesdataset.org/. The study uti-
lizes the Natural Scenes Dataset (NSD) (Allen et al. 2022),
a vast fMRI data set from eight subjects exposed to im-

Figure 3: Brain-Diffuser pipeline, the decoder used in this
study, begins with brain activity from viewing an image
stimulus. A model is trained to estimate the latent represen-
tation of the VDVAE autoencoder as well as the text and
visual embeddings of the CLIP model, using linear models.
These estimated vectors are fed into Versatile Diffusion—a
latent diffusion model—to reconstruct the final image.

ages from the COCO21 dataset. We focused on four sub-
jects, forming a unique training dataset of 8,859 images and
24,980 fMRI trials from SubjO1, and a common dataset of
982 images and 2,770 trials for each one of the subjects.
To reduce spatial dimensionality, we applied a mask to the
fMRI signal (resolution of 1.8mm isotropic) using the NS-
DGeneral ROI, targeting various visual areas. This strategic
ROI selection enhanced the signal-to-noise ratio and sim-
plified data complexity, enabling exploration of both low-
level and high-level visual features. Temporal dimension-
ality was reduced using precomputed betas from a general
linear model (GLM) with a fitted hemodynamic response
function (HRF) and a denoising process as detailed in the
NSD paper. Data from SubjO1, SubjO2, Subj05, Subj07,
warped into the Montreal Neurological Institute common
space (MNI) and downsampled at 2mm, represented the
brain activity of each subject and helped to decrease com-
putational time and cost. We used the common dataset as
alignment, keeping out 30 images for visual comparison, so
there are 8859 unique images for each subject. We only used
them for training the decoding model for SubjO1. Then there
are 952 common images across all subjects that were used
to functionally align them to the activity of Subj01, and 30
common images kept out for visual comparison on images
neither used in the training or in the alignment procedure.
These 30 images were chosen because they’re used as vi-
sual qualitative evaluation of decoding results in other pa-
pers and could help the reader to compare results across dif-
ferent methods. Decoding metrics are evaluated on the 952
images which correspond to our test set for each one of the
subjects, since these images are never seen by the decoder
model, so the evaluation is still fair and on unseen images.
When we refer to 100% of common data we are pointing to
these 952 images.

Decoding model:The “Brain-Diffuser” (Ozcelik and Van-
Rullen 2023) model is a two-stage framework for recon-
structing natural scenes from fMRI signals. Initially, a Very
Deep Variational Autoencoder (VDVAE) provides an “ini-
tial guess” of the reconstruction, focusing on low-level de-
tails. This guess is refined using high-level semantic features
from CLIP-Text and CLIP-Vision models, employing a la-



Figure 4: More example results. Format and conventions as
in Figure 2

tent diffusion model (Versatile Diffusion) for final image
generation. The model, represented in Fig. 3, takes fMRI
signals as input and generates reconstructed images, captur-
ing low-level properties and overall layout. As a state-of-the-
art procedure, Brain-Diffuser was trained using data from
Subj01 in the MNI space (cross-subject decoding requires a
common space). Further details about the decoding model
are available in the original paper.

Cross-subject decoding: This study investigates cross-
subject brain decoding enabled by functional alignment.
The pipeline involves two alignment steps: Anatomical
alignment transforms data to a standard template (MNI
space), facilitating structure comparison across subjects.
This linear + nonlinear warping relies on software like
FSL and ANTs. Functional alignment necessitates a more
comprehensive approach. Consider the scenario where the
brain activity of a source subject S needs to align with
a target subject T. These activities, responses to numer-
ous stimuli, are matrices of shape (# stimuli, # vox-
els). Given that subjects encounter several common stim-
uli (i.e., they view identical images in the fMRI scanner),
we can divide the datasets into Tcommon, Tdif ferent
and Scommon, Sdif ferent. Our goal is to leverage the
common dataset portion to learn a mapping from S to 7,
aligning the entire S dataset with the T functional space.
The NSD experiment’s structure, with separate training and
test sets (the latter containing identical images for each sub-
ject), provides a common stimuli set for alignment purposes.

Our approach embraces a simple assumption: even in dif-
ferent subjects, all functional data contain the information
for the same stimuli, albeit possibly spread across differ-
ent voxels. This suggests that one subject’s activity (source)
might be expressed as a linear combination of the activity
of another subject (target) for the same stimuli. By deriv-
ing a linear combination for each voxel of the target from
all possible voxels of the source, we can create a linear
map from the source to the target, facilitating functional
alignment. The target subject activity can be expressed as
t; = > ; W;s; where ti is the i-th activity of the target
voxel for each common dataset stimulus. Here, ti repre-
sents the i-th column of Tcommon, expressed as a lin-
ear combination of all Scommon columns. The challenge
lies in finding the vector of w values. When extended to
all the target subject voxels, the w vector morphs into a

square matrix W, each column of which contains weights
to estimate one target subject voxel from a combination of
source values. The objective can be redefined as minimizing
|ScommonWT — Tcommonl|?.

We employed Ridge Regression to determine the W ma-
trix, conducting a 5-fold cross-validation to select the opti-
mal hyper-parameter o. We computed these values to align
all the sources Subj02, Subj05, and Subj07, to the functional
space of SubjO1 chosen as the target. This pipeline leverages
both anatomical and functional considerations to enable pre-
cise cross-subject decoding, mitigating inter-individual vari-
ability. The functional alignment step is key for handling dif-
ferences in how information is represented across subjects’
brains.

Evaluation

Our research seeks to evaluate visual stimuli’s detailed
cross-subject brain decoding feasibility, scrutinizing the
alignment methods and shared data ratio at play. Our shared
dataset, or “test dataset,” comprises 982 images, all viewed
by every subject. In order to allow visual comparison, we
excluded 30 images from the original Brain-Diffuser paper.
Thus, these excluded images neither influenced the training
of the decoding pipeline nor the alignment process. The re-
maining 952 images serve as the shared dataset. We com-
puted transformations for each alignment method (anatom-
ical, hyperalignment, ridge regression) and shared dataset
proportion, applying the linear transformation to the com-
plete dataset. This procedure aligns the images with Subject
01’s functional space. We then used the pre-trained Brain-
Diffuser pipeline for decoding the aligned fMRI activity and
reconstructing the images. We assessed our image recon-
struction process through both basic and advanced metrics,
including PixCorr, SSIM, and 2-way accuracy in AlexNet,
Inception, and CLIP latent spaces. This comprehensive eval-
uation approach allows us to benchmark our results against
other brain decoding studies. Further studies in Appendix
show the relation between the fraction of data used for align-
ment and performances, the impact of choosing one subject
or another as target” and the comparison without functional
alignment and using hyperalignment, a popular neuroimag-
ing method as functional alignment approach.

Cross-Dataset decoding experiment

To assess our decoding pipeline’s generalizability in hard
conditions, we conducted cross-dataset decoding between
BOLDS5000(Chang et al. 2019) and the Natural Scenes
Dataset (NSD). BOLD5000 includes fMRI data from five
subjects viewing 5,000 images at 3T field strength, offer-
ing lower signal-to-noise ratio compared to NSD’s 7T data.
The semantic range in BOLDS5000 is narrower than NSD’s
varied stimuli. Display protocols differ: NSD uses a rapid-
event protocol with images shown for 2 seconds and a 1-
second pause, while BOLD5000 shows images for 1 sec-
ond followed by 9 seconds of cross fixation. Both datasets
were processed identically within the visual cortex masks.
Focusing on BOLD5000’s subject CSI1, which shares 1,000
images with NSD subjects, we aimed for direct neural re-
sponse comparison. The experiment involved training a de-



Subj Pixcorr  SSIM AlexNet2 AlexNet5 Inception CLIP

subj01 (target) 0.287676  0.268134  0.847251  0.96334 0.89613 0.936864
subj02 (aligned) 0.288028 0.267577 0.839104  0.956212  0.893075  0.955193
subj05 (aligned) 0.283798  0.267467 0.836049  0.953157  0.904277  0.937882
subj07 (aligned) 0.283352  0.266303  0.851324  0.957230 0.910387  0.918534

Pixcorr  SSIM AlexNet2 AlexNet5 Inception CLIP

within BOLD5000 0.102 0.103 0.569 0.596 0.532 0.705
Cross NSD 0.1734 0.231 0.562 0.732 0.598 0.729

Table 1: The upper section of the table shows quantitative
metrics for cross-subject decoding experiments with bold
values indicating better performance. Subjects 02, 05, and
07 are aligned and decoded using subject 01’s data. The
lower section presents metrics for cross-dataset decoding
experiments, comparing within BOLD5000 and Cross NSD
performances.

coder with NSD Subject 1, aligning common data from
BOLDS5000 CSI1, and conducting cross-dataset decoding.
We compared this with within-dataset and within-subject
decoding performances using the Brain-Diffuser pipeline
on BOLD35000’s training data (80% non-common data).
Ridge Regression was used as the alignment matrix be-
tween BOLD5000 and NSD neural spaces. After transform-
ing BOLDS5000 test data, decoding was performed using the
NSD Subj01-trained decoder. Metrics were calculated for
decoded test sets within and across datasets, exploring the
capability of high-quality cross-dataset and cross-field fMRI
data decoding.

Results

Cross-Subject Decoding: Figures 2, 4 compare stimuli
to decoded images for SubjOl (decoder training subject)
and other aligned subjects using Ridge Regression. Table
1 shows quantitative metrics for aligned subjects. In sup-
plementary material, more qualitative and quantitative com-
parisons and different baselines (only anatomical alignment,
functional hyperalignment), as well as experiments with dif-
ferent amounts of data used for learning alignment matrices,
can be found. Qualitatively and quantitatively, we found that
functional alignment is critical for fine-grained decoding,
precisely matching neural signals to brain regions. Ridge
Regression achieved above-chance performance with just
10% of data, nearing qualitatively and quantitatively perfor-
mances of within-subject decoding. This suggests reliable
decoding with significantly reduced scan times is feasible.

Cross-Dataset Decoding: Despite protocol and field
strength differences between datasets, cross-dataset decod-
ing was successful. Qualitative analysis showed reconstruc-
tions from BOLDS5000 subject surpassed within-dataset de-
coding when aligned to NSD subject and using its decoder
(Figure 5). This demonstrates the feasibility of applying a
decoder across distinct fMRI datasets with shared stimuli.
Variations in protocols and field strengths pose challenges,
but our pipeline achieved effective functional alignment de-
spite these hurdles. Quantitative metrics (Table 1) further
demonstrate enhanced performance across all parameters
when using the cross-dataset decoder, highlighting the sig-
nificant advantages of this approach. In summary, key find-

Figure 5: Cross-Dataset qualitative results. Columns A, B, C
display random test set examples. ”Stimuli” column presents
original experimental stimuli. "Within BOLD5000” shows
reconstructions by a BOLD5000-trained model. ”Cross
NSD” column depicts results from aligned NSD dataset ac-
tivity decoded with an NSD-trained decoder, showing higher
semantic similarity than the second column.

ings emphasize functional alignment’s pivotal role and the
potential for reliable decoding with reduced data require-
ments. Cross-dataset decoding further highlights the possi-
bilities of generalized models.

Discussion and Conclusion

Our study highlights the crucial role of functional alignment
in brain decoding. This alignment enables accurate neural
activity decoding from different individuals using a model
trained on another subject. Our findings suggest that using
a simple method like Ridge Regression can significantly re-
duce scan times, as reliable decoding is possible with just a
portion of the dataset. This approach, along with the obser-
vation of qualitative similarities in decoded images across
subjects, opens up new research directions to explore fine-
grained inter-subject differences. We also discovered that
despite individual brain structure and function differences,
it is feasible to decode shared neural activity patterns, sug-
gesting the potential for generalized brain decoding mod-
els. Our cross-dataset experiment between BOLD5000 and
the Natural Scenes Dataset demonstrates the feasibility of
this approach, even with disparities in acquisition protocols.
Current research suggests that while certain brain activity as-
pects can be decoded across subjects, the process is not yet a
comprehensive or intrusive *mind-reading’ tool. A key find-
ing highlights the disruptive role of attention mechanisms
(Cukur et al. 2013), suggesting that brain decoding is only
possible with actively participating, aware subjects. While
our methods currently prevent involuntary or covert *mind
reading’, as the field advances, maintaining strong ethical
frameworks for brain decoding research becomes even more
critical. Informed consent, strict data privacy protocols, and
potential societal implications consideration remain key as-
pects of the advance of science in this direction. In conclu-
sion, our research underlines the importance of functional
alignment in brain decoding of visual stimuli and reveals the
possibility of reducing scanning durations while still achiev-
ing effective decoding.
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Appendix

In this section, we present additional results that support the
main findings of the paper. In particular, we explored as
baselines the use of only anatomical alignment and a pop-
ular functional alignment technique called hyperalignment.
Then, we asked ourselves how the amount of data used for
learning the alignment matrices will affect the decoding per-
formances and finally what happens when changing the tar-
get subject. Fig A3 and A8 show additional qualitative re-
sults of our approach.

Baselines

This section investigates three alignment strategies to eval-
uate cross-subject fine-grained brain decoding’s feasibility:
anatomical alignment, functional alignment via hyperalign-
ment, and functional alignment through ridge regression.

Anatomical Alignment Anatomical alignment, a com-
mon neuroscience method, aligns to a standard template,
here, the MNI space, facilitating anatomical structure com-
parison. This alignment typically involves a linear coregis-
tration of anatomical images between native and common
spaces, followed by a nonlinear warping to match com-
mon brain structures. Several software options like FSL and
ANTS can perform this task. The NSDData authors (Allen
et al. 2022) elaborate on this process in their released code,
providing betas (i.e. coefficients obtained by theressing the
stimuls waveform against the fMRI data) for all subjects
in the MNI common space (1mm). We downsampled these
to 2mm to approximate the resolution used in the original
Brain-Diffuser decoding paper (1.8mm) and to reduce spa-
tial dimensionality.

HyperAlignment HyperAlignment (Haxby et al. 2011,
2020), a functional data alignment technique, models func-
tional data as high-dimensional points, with each voxel rep-
resenting a dimension with betas ranging in R. This method,
based on Procrustes Analysis (Gower 1975), presents a high-
dimensional model of the representational space in the hu-
man ventral temporal (VT) cortex, wherein dimensions are
response-tuning functions common across individuals.

To perform the Procrustes analysis for functional brain
alignment, we aim to find a rotation matrix R and a scale
factor c such that the difference |cSR — T|? is minimized.

This is achieved by computing the matrix product P =
ST wmonT common» Performing the singular value decom-
position of P to obtain left and right eigenvector matrices
U and V, Computing R = UV7T and the scaling fac-

. T
tr ace(Tcommon (Scommon

T ace(ST e Seommon )R)). Finally, we can apply
the matrix R and the scaling ¢ to both common and non-
common source data to align them with the target subject.
We computed these values for Subj02, Subj05, and Subj07
as source subjects, using SubjO1 as the target, to align all
subjects to the functional space of the first one. For detailed
mathematical proofs and other insights, please refer to the
original articles (Haxby et al. 2020, 2011; Gower 1975).

tor ¢ =

Impact of the amount of data used for alignment

We also examined how the alignment performance fluctuates
when the shared data makes up 10%, 25%, 50%, and 100%
of the total common data (952 images). However, the goal
here is not merely comparison, but rather the examination
of performance in relation to the shared data fraction and
alignment method, given a fixed decoding pipeline, trained
solely on Subj01 as a reference target.

Results

Fig A2 (A) shows qualitatively decoding performances of
our apporach in function of the amount of data used for
alignment. Fig A2 (B) shows qualitative results using other
decoding baselines (namely only anatomical, hyperalign-
ment and our approach based on Ridge regression). Anatom-
ical and Hyperalignment methods fail to yield satisfactory
results, demonstrating just above chance performance lev-
els for 2-way classification accuracy and poor performance
for low-level metrics such as SSIM and PixCorr. However,
Ridge Regression exhibits an increasing performance based
on the volume of data used for alignment mapping func-
tion learning. This method reaches performance levels com-
parable with the within-subject decoder in both low-level
and high-level metrics, using all the common data (approxi-
mately 10% of the entire dataset).

Anatomical method’s inefficacy: As corroborated by
previous studies (Haxby et al. 2020), our research found that
anatomical methods for brain decoding are ineffective. Rely-
ing on the physical structure of the brain for alignment and
decoding does not deliver the requisite precision for fine-
grained decoding tasks. This could be attributed to inher-
ent anatomical variability across different individuals, which
may not necessarily align with functional differences. The
specialized areas in the brain with functional selectivity can
sometimes yield performance above chance levels. How-
ever, in most cases, decoded images do not correlate with
the stimulus, undermining the reliability of this method for
cross-subject brain decoding.

Overfitting tendency of complex techniques: We noted
that more sophisticated techniques, like hyperscanning for
brain decoding, tend to overfit the data. This results in
poor generalization to unseen data, with metrics measuring
n-way accuracy reaching only chance levels. While these
techniques might seem to offer superior decoding accuracy
initially, their lack of generalizability limits their practical
utility. Of course, room for improvement exists, perhaps
through the incorporation of regularization techniques.

Our research reveals the limitations of anatomical meth-
ods for brain decoding, which rely on the physical brain
structure for alignment and decoding. These methods un-
derperformed due to inherent brain anatomical variability
across individuals, which may not align with functional dif-
ferences. Thus, this study emphasizes the need for func-
tional, not merely anatomical, considerations in decoding
studies. Fig A4 plot all the quantitative metrics in function
for all the baselines in function of the fraction of data used
for alignment (except for anatomical alignment which is in-
dependent given is only-structural nature).



Figure A1: A: Functional alignment comparison using Ridge Regression across varying fractions of shared data. The ”Stimulus”
column showcases experimental images, while subsequent columns depict the decoded and aligned activity of Subj02 based
on Subj01. B: A comparison of distinct alignment techniques. The ”Stimulus” column again presents the experimental images,
with the remaining columns illustrating the decoded activity of Subj02, aligned to SubjO1 through various methodologies.

Figure A2: A: Functional alignment comparison using Ridge Regression across varying fractions of shared data. The ”Stimulus”
column showcases experimental images, while subsequent columns depict the decoded and aligned activity of Subj02 based
on SubjO1. B: A comparison of distinct alignment techniques. The ”’Stimulus” column again presents the experimental images,
with the remaining columns illustrating the decoded activity of Subj02, aligned to Subj01 through various methodologies.

Impact of choice of the target subject

To systematically assess the influence of selecting distinct
subjects for model training and alignment, we experimented
with multiple combinations. For instance, the decoder was
trained on Subject 1, followed by alignment of Subject 2 to
this target, and subsequent decoding of Subject 2. This pro-
cedure was also executed with the decoder trained on Sub-
ject 2, alignment of Subject 1, and decoding of Subject 1. We
extended this approach to encompass all potential combina-
tions of our four subjects. As evidenced in figures A5 and
A6, the qualitative nature of the decoded images remained
consistent irrespective of the subjects chosen for training and
alignment. These figures distinctly captured high-level con-
tent and foundational shapes across varying subject combi-
nations, yielding analogous visual decoding results.

Within these figures, the diagonal cells represent within-
subject decoding, wherein the model undergoes both train-
ing and testing on an identical subject. In contrast, off-
diagonal cells signify cross-subject decoding, where distinct
subjects are employed for training as opposed to alignment
and decoding.

Despite the variations in quantitative metrics, the vi-
sual reconstructions derived from different combinations are
qualitatively analogous. This underscores the decoder’s pro-
ficiency in generalizing across diverse subjects. The pres-

ence of shared neural representations, even amidst indi-
vidual disparities, facilitates precise cross-subject decoding
across a spectrum of training and alignment configurations.



Figure A3: More example results. Format and conventions as in Figure 2
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Figure A4: This figure illustrates the performance of various methods evaluated using different metrics. Blue lines represent
metrics from the target subject’s decoded images, derived from their test set brain activity. Green lines denote the mean and
standard deviation (std) of performance on test sets from other subjects, aligned using hyperalignment. Gray lines present
results achieved using anatomical alignment, while orange lines display outcomes using Ridge Regression. Remarkably, the
Ridge Regression approach yields positive results even when using a tiny fraction of the entire dataset. Furthermore, as this
fraction approaches roughly 10% of the total set, resulting in 952 images the performance becomes comparable with those
obtained by the within-subject model.



Figure AS5: This figure illustrates decoding results from different combinations of subjects used for model training versus
alignment. The columns represent decoders trained on individual target subjects. The rows show each remaining subject aligned
to the target space of the column subject for decoding.

Figure A6: More examples of the impact of choosing a subject as a target. Same configuration as Fig AS



Figure A7: More example results. Format and conventions as in Figure 2



Figure A8: More example results. Format and conventions as in Figure 2



